Journal of Organometallic Chemistry, 429 (1992) C27–C32 Elsevier Sequoia S.A., Lausanne JOM 22577PC

Preliminary communication

Die Molekül- und Kristallstruktur von $(CH_3)_2 InN_2C_3H_3$

H.-D. Hausen, K. Locke und J. Weidlein

Institut für Anorganische Chemie der Universität, Pfaffenwaldring 55, W-7000 Stuttgart 80 (Deutschland) (Eingegangen den 20. Dezember 1991)

Abstract

 $(Me_2InN_2C_3H_3)_2$ (Me = CH₃) crystallizes in the monoclinic space group $P2_1/c$ with the lattice constants a 1727.0(2), b 2169.7(3), c 815.4(1) pm, β 92.64(1)° and Z = 8 (dimers). The unit cell contains two crystallographically independent molecules A and B which do not differ significantly. The In $(N-N)_2In$ skeleton of both dimeric molecules has a boat conformation; the structure has been refined to an R-value of 0.032.

Die Titelverbindung $(Me_2InN_2C_3H_3)_2$ ist auf einfache Weise aus InMe₃ und Pyrazol (Molverhältnis 1:1) in benzolischer Lösung dargestellt und durch zweimalige Vakuumdestillation gereinigt worden [1]. Da dieses Diazolid einerseits sehr gut in allen gängigen, aprotischen Lösungsmitteln löslich ist, andererseits die Schmelze (Fp. 23–26°C) in extremer Weise zur Unterkühlung neigt, sind gut ausgebildete, für eine Strukturuntersuchung geeignete Einkristalle nicht nach üblichen Verfahren zu erhalten. Mehrmonatiges Lagern einer > 50% igen Benzollösung bei 5–10°C lieferte schließlich klare, quaderförmige Kristalle, die sich auf Grund der geringen Hydrolyseempfindlichkeit problemlos in etwas gekühltem Nujol separieren und in Glaskapillaren einschmelzen ließen.

Alle röntgenographischen Messungen sind bei etwa 173 K an einem rechnergesteuerten Vierkreisdiffraktometer Syntex P2₁ mit Mo- K_{α} -Strahlung (Graphitmonochromator) vorgenommen worden. Die optimierten Winkelwerte 2 θ , ω und χ von 36 ausgesuchten Reflexen (25 < 2 θ < 35°) und deren Verfeinerung lieferten die Gitterkonstanten. Die anschließende Intensitätsmessung (3 < 2 θ < 50°; 5380 unabhängige Reflexe, davon 3811 mit $I > 3\sigma(I)$) mit ω -Abtastung (Wykoff-scan) erfolgte mit einer Abtastgeschwindigkeit, die in Abhängigkeit von der Intensität zwischen 2 und 30°/min variierte.

Dimethylindiumpyrazolid ist mit der homologen Galliumverbindung [2] isostrukturell und kristallisiert in der monoklinen Raumgruppe $P2_1/c-C_{2h}^5$ (No. 14) [3] mit den Zellparametern a 1727.0(2), b 2169.7(3), c 815.4(1) pm, β 92.64(1)°, V 3052.3(7) · 10⁶ pm³. Für Z = 8 (Dimere) errechnet sich die röntgenographische

Correspondence to: Dr. J. Weidlein, Pfaffenwaldring 55, W-7000 Stuttgart 80, Deutschland.

Dichte zu $D_{ro} = 1.845 \text{ g/cm}^3$. Die Lösung der Struktur gelang über direkte Methoden mit dem Programmpaket SHELXTL [4]. Die berechneten Lagen der Wasserstoffatome konnten zum Teil aus Differenz-Fourier-Synthesen bestätigt werden; ihr Beitrag wurde bei den Strukturfaktoren-Rechnungen zwar berücksichtigt, von Verfeinerungen blieben sie aber ausgeschlossen (riding model, U_{iso} bei 800 pm² fixiert). Die Atomstrukturfaktoren entstammen Standardquellen [3], eine empirische Korrektur des Absorptionsfehlers (ψ -Abtastung) ergab verbesserte Ergebnisse ($\mu = 2.96 \text{ mm}^{-1}$). Die Verfeinerungen nach der Methode der "kleinsten Fehlerquadrate" konvergierten bei voller Matrix mit 289 Parametern bei *R*-Werten von 0.035 ($R_1 = \Sigma ||F_0| - |F_c||/\Sigma|F_0|$) bzw. 0.032 ($R_2 =$ $[\Sigma_w(|F_0| - |F_c|)^2/\Sigma_w|F_0|^2]^{1/2}$ mit $w = 1/\sigma^2(F_0) + 0.0021(F_0)^2$; GOF = 0.89). Es treten zwei symmetrieunabhängige (Me₂InN₂C₃H₃)₂-Moleküle auf. Da sich die Unterschiede aber weitgehend auf etwas differierende Bindungs- und Knickwinkel beschränken, beruhen die Diskrepanzen möglicherweise auf Packungseffekten.

Die sechsgliedrigen In(N-N) ₂In Grundgerüste beider Moleküle (in der Einheitszelle jeweils vierfach vertreten) besitzen Wannenkonformation, ebenso wie z.B. das Gerüst des gemischten, unsymmetrischen Pyrazolids $Me_2In(N_2C_3H_3)_2BH_2$ [5]. Die 4 Stickstoffatome dieses Skeletts bilden die Basisfläche der Wanne aus und liegen mit nur ±5.2 pm für Molekül A (±3.3 pm für Molekül B) alternierend zu einer durch diese Atome gelegten 'besten Ebene'. Die Dreiecksflächen N(11)–In(1)–N(12) und N(21)–In(2)–N(22) sind zur Basis gleichsinnig um 31.1 und 33.3° (24.4 und 32.0°) abgeknickt, während die beiden im Rahmen der Meßgenauigkeit planaren N-Heterocyclen eine dazu entgegengesetzte Winkelung (siehe Fig. 1) von 31.1 und 28.9° (25.5 und 22.4°) aufweisen. Die insgesamt vier C–In–C Valenzwinkel der beiden Moleküle A und B variieren zwischen 129.6 und 132.5° — der aus den schwingungsspektroskopischen Daten abgeleitete Wert beträgt 131 ± 2° [6]

Tabelle 1a

Atomkoordinaten ($\times 10^4$) und äquivalente isotrope Auslenkungsparameter (pm²) der Nichtwasserstoffatome

Atom	x	у	z	U_{eq}^{a}
	Molekül A/B	Molekül A/B	Molekül A/B	Molekül A/B
In(1)	4544(1)/285(1)	9351(1)/1099(1)	2624(1)/1092(1)	360(1)/372(1)
In(2)	2450(1)/2520(1)	8649(1)/1564(1)	1946(1)/1183(1)	420(2)/414(2)
C(111)	5669(4)/692(4)	9173(4)/1210(4)	3782(9)/2608(10)	598(27)/562(26)
C(112)	4119(5)/357(5)	10160(3)/656(4)	1362(9)/-1257(9)	549(25)/582(27)
C(211)	2162(4)/2548(5)	9473(3)/1100(4)	648(9)/-1127(9)	503(23)/642(29)
C(212)	1739(6)/3383(4)	7868(5)/2056(4)	2449(12)/2627(11)	805(36)/663(30)
N(11)	3758(3)/1213(3)	9086(3)/743(2)	4550(6)/2795(6)	412(17)/341(15)
N(12)	4248(3)/769(3)	8530(2)/2032(2)	1138(6)/931(7)	391(16)/401(17)
N(21)	3012(3)/1957(3)	8893(2)/946(2)	4354(6)/2938(6)	382(16)/346(15)
N(22)	3540(3)/1521(3)	8253(2)/2195(2)	1040(6)/948(6)	388(16)/403(16)
C(1)	3924(5)/1111(4)	9105(4)/351(3)	6174(8)/4042(8)	569(26)/445(21)
C(2)	3305(5)/1786(4)	8928(4)/289(3)	7037(9)/4984(8)	619(29)/482(23)
C(3)	2742(5)/2309(4)	8793(3)/666(3)	5849(9)/4239(8)	531(25)/474(22)
C(4)	4737(5)/354(5)	8171(3)/2545(3)	357(9)/753(10)	549(25)/556(25)
C(5)	4358(5)/816(5)	7661(4)/3047(3)	- 258(10)/627(9)	649(30)/576(26)
C(6)	3631(5)/1556(5)	7726(3)/2806(3)	191(9)/775(9)	546(25)/515(24)

^a U_{eq} ist definiert als ein Drittel der Spur des orthogonalen U_{ij} -Tensors.

Tabelle 1b

Anisotrope thermische Auslenkungsparameter der Nichtwasserstoffatome. Die Parameter U_{ij} des anisotropen Temperaturfaktors exp $[-2\pi^2(U_{11}h^2a^{*2} + -2)U_{12}he^{*}h^* + -1)$ haben die Dimension am² I

107						
Atom	U ₁₁ Molekül A/B	U ₂₂ Molekül A∕B	U ₃₃ Molekül A/B	U ₁₂ Molekül A/B	<i>U</i> ₁₃ Molekül A/B	U ₂₃ Molekül A/B
In(1)	305(2)/298(2)	403(3)/356(2)	372(2)/459(3)	-41(2)/-19(2)	- 6(2)/-3(2)	3(2)/-18(2)
In(2)	330(2)/310(2)	465(3)/455(3)	463(3)/482(3)	- 76(2)/-16(2)	18(2)/66(2)	11(2)/36(2)
Q(111)	417(39)/384(37)	818(57)/561(46)	550(44)/750(51)	1(39) / - 35(34)	- 76(34)/112(35)	35(40)/-30(38)
C(112)	604(46)/759(53)	444(40)/517(43)	590(43)/464(41)	- 12(36)/- 163(39)	- 62(37)/- 39(38)	56(34) / -1(33)
C(211)	533(42)/836(60)	457(38)/585(47)	509(39)/510(43)	171(33)/279(45)	- 102(33)/96(41)	- 62(32)/60(37)
C(212)	751(59)/388(39)	801(63)/787(58)	874(62)/804(55)	-421(53)/-137(40)	155(50)/-89(39)	80(52) / - 60(46)
N(11)	440(30)/306(25)	491(32)/332(26)	303(26)/385(27)	- 40(26)/- 24(21)	- 1(22)/20(21)	- 15(22)/44(21)
N(12)	370(28)/334(27)	412(29)/329(27)	396(28)/535(32)	9(23)/55(22)	62(22) / - 27(24)	4(22)/46(23)
N(21)	407(28)/325(26)	396(28)/362(27)	351(26)/349(25)	- 33(24)/9(21)	108(22)/-10(21)	9(22)/-34(21)
N(22)	435(30)/408(29)	328(27)/362(28)	407(28)/439(28)	- 35(23)/ - 40(24)	70(23)/1(23)	- 12(22)/24(23)
Q1)	648(47)/560(41)	717(50)/361(33)	334(34)/420(35)	-104(42)/-7(31)	- 74(34)/83(31)	-60(34)/11(28)
Q(2)	854(59)/670(47)	659(51)/369(35)	353(36)/408(35)	70(45)/97(33)	142(39)/58(33)	88(34)/62(28)
C (3)	634(46)/479(39)	429(39)/530(42)	557(42)/408(34)	114(34)/77(33)	326(38)/-32(30)	101(32)/15(31)
C(4)	521(42)/518(41)	546(45)/463(41)	593(45)/681(48)	155(37)/166(35)	177(35)/-30(36)	- 67(35)/27(35)
C(S)	896(63)/855(58)	489(45)/306(34)	570(45)/561(43)	205(45)/82(38)	113(43)/-25(40)	- 157(36)/64(31)
C(6)	737(52)/567(43)	395(37)/412(38)	505(40)/568(41)	- 56(37)/-94(34)	14(37)/49(34)	- 127(32)/45(31)

Abstände	Molekül A/B	Winkel	Molekül A/B
In(1)-N(11)	219.9(5)/221.1(5)	C(111)-In(1)-C(112)	129.6(3)/129.8(3)
In(1)-N(12)	220.1(5)/219.7(5)	C(211)-In(2)-C(212)	129.6(3)/132.5(3)
In(2)-N(21)	221.4(5)/221.9(5)	N(11)-In(1)-N(12)	92.6(2)/95.3(2)
In(2)-N(22)	222.7(5)/220.2(5)	N(21)-In(2)-N(22)	92.5(2)/93.8(2)
In(1)-C(111)	215.6(7)/215.1(7)	C(111)-In(1)-N(11)	102.3(2)/104.1(2)
In(1)-C(112)	214.7(7)/215.1(8)	C(111)-In(1)-N(12)	106.1(3)/104.0(3)
In(2)-C(211)	212.5(7)/213.9(8)	C(112)-In(1)-N(11)	110.4(3)/109.5(3)
In(2)-C(212)	214.3(10)/214.1(8)	C(112)-In(1)-N(12)	109.4(2)/108.7(3)
N(11)-N(21)	135.7(7)/135.7(7)	C(211)-In(2)-N(21)	108.9(2)/108.1(3)
N(12)-N(22)	136.2(7)/134.5(7)	C(211)-In(2)-N(22)	110.0(2)/105.4(3)
N(11)-C(1)	134.3(8)/134.3(8)	C(212)-In(2)-N(21)	104.5(3)/105.2(3)
N(12)-C(4)	133.3(9)/133.0(9)	C(212) - In(2) - N(22)	105.0(3)/105.1(3)
N(21)-C(3)	134.4(9)/134.3(8)	In(1)N(11)N(21)	127.6(4)/126.6(4)
N(22)-C(6)	134.9(9)/133.6(9)	In(1)-N(11)-C(1)	125.9(5)/125.4(4)
C(1)-C(2)	136.2(12)/137.3(10)	In(1)-N(12)-N(22)	125.1(4)/127.7(4)
C(2) - C(3)	137.2(11)/138.1(10)	In(1)-N(12)-C(4)	126.9(5)/125.0(5)
C(4)-C(5)	137.0(11)/135.7(11)	In(2)-N(21)-N(11)	123.6(4)/125.6(4)
C(5)-C(6)	133.2(12)/138.1(11)	In(2)-N(21)-C(3)	127.5(5)/125.9(4)
		In(2)-N(22)-N(12)	125.4(4)/126.1(4)
		In(2)-N(22)-C(6)	128.1(5)/126.0(5)
		C(1)-C(2)-C(3)	104.1(7)/104.6(6)
		C(4)-C(5)-C(6)	104.7(7)/103.5(6)
		N(11)-C(1)-C(2)	111.4(7)/110.3(6)
		N(21)-C(3)-C(2)	109.9(7)/109.5(6)
		N(12)-C(4)-C(5)	110.2(7)/111.4(7)
		N(22)-C(6)-C(5)	111.4(7)/109.9(6)

Fig. 1. Molekülstruktur von $[Me_2InN_2C_3H_3]_2$ (Molekül A).

Fig. 2. Ausschnitt aus der Kristallstruktur von [Me₂InN₂C₃H₃]₂.

— die zugehörigen C-In-C Ebenen sind geringfügig um 4.6° (Molekül A) bzw. 2.6° (Molekül B) gegeneinander verdrillt.

Mit 220.9 pm (Mittelwert) sind die In-N Bindungen um knapp 5 pm kürzer, als im zuvor zitierten, gemischten Me₂In/BH₂-Pyrazolid [5], und weichen sowohl von terminalen In-N Einfachbindungen (für indiumorganische Verbindungen bisher nur in einem Fall vermessen [7]) wie auch von In \leftarrow N Adduktbindungen [8] um mehr als ± 25 pm ab. Sie liegen aber innerhalb des engen Bereiches von 225 ± 5 pm, der für In-N-In Brückenbindungen (wie z.B. in zahlreichen Organoindiumamiden nachgewiesen [9]) als typisch einzustufen ist.

Weitere Einzelheiten der Strukturbestimmung sind in den Tabellen 1 und 2 zusammengefaßt, die verwendeten Atombezeichnungen können Fig. 1 entnommen werden, während Fig. 2 die Packung der Moleküle in der Einheitszelle veranschaulicht. Für weitergehende Details der Strukturanalyse sei auf [10] verwiesen.

Literatur

- 1 K. Locke, J. Weidlein, F. Scholz, N. Bouanah, N. Brianese, P. Zanella und Y. Gao, J. Organomet. Chem., 420 (1991) 1.
- 2 A. Arduini und A. Storr, J. Chem. Soc., Dalton Trans., (1974) 503; D.F. Rendle, A. Storr und J. Trotter, Can. J. Chem., 53 (1975) 2930.
- 3 International Tables for X-Ray Crystallography, Vol. I und IV, Kynoch Press, Birmingham, England, 1974.
- 4 Siemens Analytical X-Ray Instruments, SHELXTL, Release 3.4, Januar 1989.
- 5 D.L. Reger, S.J. Knox, A.L. Rheingold und B.S. Haggerty, Organometallics, 9 (1990) 2581.
- 6 K. Locke, Dissertation, Universität Stuttgart, 1991.
- 7 B. Neumüller, Z. Naturforsch., Teil B, 46 (1991) 753.

- 8 D.C. Bradley, H. Dawes, D.M. Frigo, M.B. Hursthouse und B. Hussain, J. Organomet. Chem., 325 (1987) 55.
- 9 K. Mertz, W. Schwarz, B. Eberwein, J. Weidlein, H. Hess und H.-D. Hausen, Z. Anorg. Allg. Chem., 429 (1977) 99; K.A. Aitchison, J.D.J. Backer-Dirks, D.C. Bradley, M.M. Faktor, D.M. Frigo, M.B. Hursthouse, B. Hussain und R.L. Short, J. Organomet. Chem., 366 (1989) 11; B. Neumüller, Chem. Ber., 122 (1989) 2238 und Z. Naturforsch., Teil B, 45 (1990) 1559.
- 10 Alle Einzelheiten der Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-56016, der Autoren und des Zeitschriftenzitats angefordert werden.